Графические возможности языка PASCAL

ÄВВЕДЕНИЕ

ÄРождение Паскаля

ÄГрафические возможности языка Паскаль

ÄРабота в графическом видеорежиме. Общий обзор

ÄИнициализация графического режима

ÄУправление экраном и окнами

ÄУправление цветом и фоном

ÄПостроение простейших графических изображений

ÄУправление курсором

ÄВывод текстовой информации в графическом видеорежиме

ÄАлгоритм построения окон и статических объектов в них

ÄДеловая графика

ÄПостроение графиков  элементарных функций

ÄРеализация имитации движения графических объектов

ÄСПРАВОЧНЫЕ ТАБЛИЦЫ

ÄСправочные  материалы о языке Pascal

ÄТВОРЧЕСТВО УЧАЩИХСЯ

ÄЗадания для самостоятельного выполнения

ÄПостроение функций второго порядка

ÄЭТО ИНТЕРЕСНО

ÄЛИТЕРАТУРА

 

ÄКАРТА

Построение функций второго порядка

 

 

Функции второго порядка ещё называют кривыми второго порядка.К ним относятся:

 

Окружность

 Окружность- замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра). Если R - радиус окружности - расстояние каждой его точки до центра, то длина окружности выразится числом 2pR, а площадь ею ограниченная, числом pR2 , где  p=3,14159 - отношение длины окружности к её диаметру.

Уравнение окружности в прямоугольной системе координат:

(x-c)2 + (y-d)2 = R2,

где, c и d - координаты центра.
  Отметим, что движение по окружности часто встречается в физике и технике, по круговой траектории движутся люди при катании на колесе обозрения, карусели, по круговым орбитам могут двигаться искусственные спутники Земли. Хорошо известна планетарная модель атома водорода по Резерфорду. В центре атома находится ядро, а электрон вращается вокруг него.

Эллипс

 Эллипс(греч. elleipsis - недостаток) - линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса.

 

Эллипс - множество точек М плоскости (рис.1), сумма расстояний r1= МF1 и r2= МF2 которых до двух определенных точек F1(-c,0) и F2(c,0) этой плоскости (фокусов эллипса) постоянна

r1+r2=2а.

Середина 0 отрезка F1F2 (фокусного расстояния)называется центром эллипса.

                   Рис.1.

В прямоугольной системе координат 0ху с началом в центре эллипса, на оси которой лежат фокусы эллипса уравнение эллипса имеет следующий вид

х2/а2+у2/в2=1в222,

где а и в - длинны большой и малой полуосей эллипса. При а=в фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.

Эллипс - центральная линия второго порядка

Эллипс - замкнутая линия, симметричная относительно осей 0x и 0y главных (большой и малой) осей  и центра.

Форма эллипса (его "вытянутость") определяется значением эксцентриситета e=c/a<1 (для окружности е=0)

Прямые D1D1' и D2D2' (рис.1), параллельные малой оси эллипса и отстоящие от его центра на расстоянии d=±a/e, называются директрисами эллипса, соответствующими фокусами F1 и F2. Отношение расстояний любой точки эллипса до фокуса к расстоянию её до соответствующей директрисы постоянно и равно эксцентриситету r1/d1=r2/d2=e. Площадь эллипса S=pi*a*в, pi=3,14159.
  Отметим, что по эллипсам движутся планеты вокруг Солнца.

 

Название "Эллипс" ввёл Аполлоний Пергский, рассматривая эллипс как одно из конических сечений.

 

Парабола

 Парабола  (греч. parabole) – кривая второго порядка. 

Прямая пересекает ее не более чем в двух точках . 

При этом парабола может быть определена как:

-множество точек М(xy) плоскости, расстояние FM которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию MN до определенной прямой АN - директрисы параболы;

-линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса;

-в прямоугольной системе координат 0ху с началом в вершине параболы и осью направленной по оси параболы уравнение параболы имеет так называемый канонический вид 

y2=2px,

где р (фокальный параметр) - расстояние от фокуса до директрисы.
  Отметим, что по параболе движется тело в однородном поле силы тяжести, брошенное под углом к горизонту, и заряженная частица в однородном электрическом поле плоского конденсатора.

Гипербола
 

 Гипербола (греч. hyperbole) - плоская кривая линия;

- множество точек М плоскости  разность (по абсолютной величине) расстояний F1M и F2M которых до двух определенных точек F1 и F2 этой плоскости (фокусов гиперболы) постоянна: F1M - F2M=2а<2с

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром гиперболы;

- линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающая обе его полости ;

- в прямоугольной системе координат 0ху с началом в центре гиперболы, на оси которой лежат фокусы гиперболы уравнение гиперболы имеет так называемый канонический 

х2/а2 - у2/в2=1, в2=с2 - а2,

где а и в длины полуосей гиперболы.
  Отметим, что по гиперболе движутся тела, навсегда покидающие Землю, скорость которых больше, чем 2-я космическая (11,2 км/c). Также по гиперболе движутся альфа-частицы в опыте Резерфорда при рассеивании их ядром атома.


Copyright © 2007 Cредняя школа №2 им. Н.П. Массонова г.Свислочь © Ярута Анжелина, Алла Синица